Portable gas detectors refer to a class of independent gas detectors that are lightweight, compact, easy to operate, and movable. They are very suitable for confined spaces, point leak detection, and mobile use. They are used to detect the composition and concentration of various gases in the environment.
Sino-Inst’s portable gas detectors can monitor and control exhaust emissions, air pollution, and gas concentrations in industrial production, urban environments, and agricultural greenhouses. It can accurately capture small changes in gas concentrations in real time, thereby promptly detecting potential safety hazards.
Featured Products
Benefits
- Portability: These devices are usually lightweight and easy to carry and operate.
- Versatility: Many portable gas detectors can detect multiple gases at the same time.
- Real-time monitoring and alarm: They can monitor the gas concentration in the environment in real time and issue an alarm immediately when dangerous gases are detected.
- Data recording: These devices usually have data recording functions for later analysis and tracking.

Application of Portable Gas Detectors
Portable gas detection technology can be used for hazardous gas detection, organic VOC gas detection, combustible gas detection, and single gas detection. Its application in detecting and eliminating safety risk precursors is also growing.
The rapid development of portable gas detectors enables the early detection of leaks. By studying the physical and chemical properties of early safety risks, gas detection can effectively prevent disasters, effectively controlling potential safety risks while ensuring personal safety.
Pharmaceutical and Chemical Industries
Portable gas detectors can monitor combustible gases such as propylene and butane in real time, simultaneously track oxygen levels, and capture toxic gases such as hydrogen sulfide. This ensures workers in confined spaces are aware of the surrounding gas environment at all times, preventing potential hazards.
Municipal Construction and Maintenance
Wastewater treatment plants may contain high concentrations of hydrogen sulfide, underground pipelines may leak gas (methane), and landfills may produce methane, hydrogen sulfide, and other gases. Portable gas detectors can cover a variety of operational scenarios.

Harsh underground environments such as mining and metallurgy
Underground coal mine operations face risks such as gas explosions, carbon monoxide poisoning, and hypoxia. Portable gas detectors can provide simultaneous detection, significantly reducing the incidence of underground gas safety accidents.
Emergency Rescue
Fire rescue and tunnel construction involve complex gas environments. The rapid response of portable gas detectors can help rescuers assess risks before entering the scene. For example, excessive carbon monoxide levels and insufficient oxygen levels at a fire scene provide data support for rescue plan development.
Common Gas Detection Ranges
| Detection gas | Range | Maximum allowable error | Minimum reading | Response time T90 |
| Combustible gas (EX) | 0-100%LEL | <±3%(F.S) | 0.1%LEL | ≤10 seconds |
| Combustible gas (EX) | 0-100%Vol | <±3%(F.S) | 0.1%Vol | ≤10 seconds |
| Methane (CH4) | 0-100%LEL | <±3%(F.S) | 0.1%LEL | ≤10 seconds |
| Methane (CH4) | 0-100%Vol | <±3%(F.S) | 0.1%Vol | ≤10 seconds |
| Oxygen (O2) | 0-30%Vol | <±3%(F.S) | 0.01%Vol | ≤10 seconds |
| Oxygen (O2) | 0-100%Vol | <±3%(F.S) | 0.01%Vol | ≤10 seconds |
| Oxygen (O2) | 0-5000ppm | <±3%(F.S) | 1ppm | ≤30 seconds |
| Nitrogen (N2) | 0-100%Vol | <±3%(F.S) | 0.01%Vol | ≤10 seconds |
| Carbon monoxide (CO) | 0-100ppm | <±3%(F.S) | 0.1ppm | ≤25 seconds |
| Carbon monoxide (CO) | 0-1000ppm | <±3%(F.S) | 0.1ppm | ≤25 seconds |
| Carbon monoxide (CO) | 0-2000ppm | <±3%(F.S) | 0.1ppm | ≤25 seconds |
| Carbon monoxide (CO) | 0-20000ppm | <±3%(F.S) | 1ppm | ≤25 seconds |
| Carbon monoxide (CO) | 0-100000ppm | <±3%(F.S) | 1ppm | ≤20 seconds |
| Carbon dioxide (CO2) | 0-500ppm | <±3%(F.S) | 1ppm | ≤20 seconds |
| Carbon dioxide (CO2) | 0-2000ppm | <±3%(F.S) | 1ppm | ≤20 seconds |
| Carbon dioxide (CO2) | 0-5000ppm | <±3%(F.S) | 1ppm | ≤30 seconds |
| Carbon dioxide (CO2) | 0-50000ppm | <±3%(F.S) | 1ppm | ≤30 seconds |
| Carbon dioxide (CO2) | 0-20%Vol | <±3%(F.S) | 0.01%Vol | ≤30 seconds |
| Carbon dioxide (CO2) | 0-100%Vol | <±3%(F.S) | 0.01%Vol | ≤30 seconds |
| Carbon dioxide (CO2) | 0-10ppm | <±3%(F.S) | 0.001ppm | ≤30 seconds |
| Formaldehyde (CH2O) | 0-10ppm | <±3%(F.S) | 0.01ppm | ≤30 seconds |
| Formaldehyde (CH2O) | 0-100ppm | <±3%(F.S) | 0.01ppm | ≤45 seconds |
| Formaldehyde (CH2O) | 0-1000ppm | <±3%(F.S) | 1ppm | ≤20 seconds |
| Ozone (O3) | 0-1ppm | <±3%(F.S) | 0.001ppm | ≤20 seconds |
| Ozone (O3) | 0-5ppm | <±3%(F.S) | 0.001ppm | ≤20 seconds |
| Ozone (O3) | 0-50ppm | <±3%(F.S) | 0.01ppm | ≤30 seconds |
| Ozone (O3) | 0-100ppm | <±3%(F.S) | 0.01ppm | ≤30 seconds |
| Ozone (O3) | 0-2000ppm | <±3%(F.S) | 0.1ppm | ≤30 seconds |
| Ozone (O3) | 0-30000ppm | <±3%(F.S) | 1ppm | ≤30 seconds |
| Ozone (O3) | 0-20mg/L | <±3%(F.S) | 0.01mg/L | ≤30 seconds |
| Ozone water (O3) | 0-20mg/L | <±3%(F.S) | 0.01mg/L | ≤30 seconds |
| Hydrogen sulfide (H2S) | 0-10ppm | <±3%(F.S) | 0.001ppm | ≤30 seconds |
| Hydrogen sulfide (H2S) | 0-50ppm | <±3%(F.S) | 0.01ppm | ≤30 seconds |
| Hydrogen sulfide (H2S) | 0-100ppm | <±3%(F.S) | 0.01ppm | ≤30 seconds |
| Hydrogen sulfide (H2S) | 0-2000ppm | <±3%(F.S) | 0.1ppm | ≤30 seconds |
| Hydrogen sulfide (H2S) | 0-10000ppm | <±3%(F.S) | 1ppm | ≤30 seconds |
| Sulfur dioxide (SO2) | 0-10ppm | <±3%(F.S) | 0.001ppm | ≤45 seconds |
| Sulfur dioxide (SO2) | 0-20ppm | <±3%(F.S) | 0.01ppm | ≤30 seconds |
| Sulfur dioxide (SO2) | 0-100ppm | <±3%(F.S) | 0.01ppm | ≤30 seconds |
| Sulfur dioxide (SO2) | 0-500ppm | <±3%(F.S) | 0.1ppm | ≤30 seconds |
| Sulfur dioxide (SO2) | 0-2000ppm | <±3%(F.S) | 0.1ppm | ≤30 seconds |
| Sulfur dioxide (SO2) | 0-10000ppm | <±3%(F.S) | 1ppm | ≤30 seconds |
| Nitrogen monoxide (NO) | 0-10ppm | <±3%(F.S) | 0.001ppm | ≤30 seconds |
| Nitrogen monoxide (NO) | 0-100ppm | <±3%(F.S) | 0.01ppm | ≤30 seconds |
| Nitrogen monoxide (NO) | 0-2000ppm | <±3%(F.S) | 0.1ppm | ≤30 seconds |
| Nitrogen dioxide (NO2) | 0-5000ppm | <±3%(F.S) | 1ppm | ≤30 seconds |
| Nitrogen dioxide (NO2) | 0-10ppm | <±3%(F.S) | 0.001ppm | ≤30 seconds |
| Nitrogen dioxide (NO2) | 0-100ppm | <±3%(F.S) | 0.01ppm | ≤30 seconds |
| Nitrogen dioxide (NO2) | 0-1000ppm | <±3%(F.S) | 0.1ppm | ≤25 seconds |
| Nitrogen dioxide (NO2) | 0-5000ppm | <±3%(F.S) | 1ppm | ≤25 seconds |
| Nitrogen dioxide (NO2) | 0-10ppm | <±3%(F.S) | 0.001ppm | ≤30 seconds |
| Nitrogen oxides (NOX) | 0-100ppm | <±3%(F.S) | 0.01ppm | ≤30 seconds |
| Nitrogen oxides (NOX) | 0-2000ppm | <±3%(F.S) | 0.1ppm | ≤30 seconds |
| Nitrogen oxides (NOX) | 0-5000ppm | <±3%(F.S) | 1ppm | ≤30 seconds |
| Chlorine (CL2) | 0-10ppm | <±3%(F.S) | 0.001ppm | ≤30 seconds |
| Chlorine (CL2) | 0-20ppm | <±3%(F.S) | 0.01ppm | ≤30 seconds |
| Chlorine (CL2) | 0-200ppm | <±3%(F.S) | 0.1ppm | ≤30 seconds |
| Chlorine (CL2) | 0-2000ppm | <±3%(F.S) | 0.1ppm | ≤30 seconds |
| Ammonia (NH3) | 0-50ppm | <±3%(F.S) | 0.01ppm | ≤30 seconds |
| Ammonia (NH3) | 0-100ppm | <±3%(F.S) | 0.01ppm | ≤30 seconds |
| Ammonia (NH3) | 0-1000ppm | <±3%(F.S) | 0.1ppm | ≤30 seconds |
| Ammonia (NH3) | 0-5000ppm | <±3%(F.S) | 1ppm | ≤30 seconds |
| Ammonia (NH3) | 0-100%LEL | <±3%(F.S) | 0.1%LEL | ≤30 seconds |
| Hydrogen (H2) | 0-100%LEL | <±3%(F.S) | 0.1%LEL | ≤30 seconds |
| Hydrogen (H2) | 0-1000ppm | <±3%(F.S) | 0.1ppm | ≤30 seconds |
| Hydrogen (H2) | 0-20000ppm | <±3%(F.S) | 1ppm | ≤30 seconds |
| Hydrogen (H2) | 0-40000ppm | <±3%(F.S) | 1ppm | ≤30 seconds |
| Hydrogen (H2) | 0-100%Vol | <±3%(F.S) | 0.01%Vol | ≤30 seconds |
| Helium (He) | 0-100%Vol | <±3%(F.S) | 0.01%Vol | ≤10 seconds |
| Argon (Ar) | 0-100%Vol | <±3%(F.S) | 0.01%Vol | ≤10 seconds |
| Xenon (Xe) | 0-100%Vol | <±3%(F.S) | 0.01%Vol | ≤30 seconds |
| Hydrogen cyanide (HCN) | 0-30ppm | <±3%(F.S) | 0.01ppm | ≤30 seconds |
| Hydrogen cyanide (HCN) | 0-100ppm | <±3%(F.S) | 0.01ppm | ≤30 seconds |
| Hydrogen chloride (HCL) | 0-20ppm | <±3%(F.S) | 0.01ppm | ≤30 seconds |
| Hydrogen chloride (HCL) | 0-200ppm | <±3%(F.S) | 0.1ppm | ≤20 seconds |
| Phosphine (PH3) | 0-5ppm | <±3%(F.S) | 0.001ppm | ≤20 seconds |
| Phosphine (PH3) | 0-25ppm | <±3%(F.S) | 0.01ppm | ≤20 seconds |
| Phosphine (PH3) | 0-2000ppm | <±3%(F.S) | 1ppm | ≤30 seconds |
| Chlorine dioxide (CLO2) | 0-1ppm | <±3%(F.S) | 0.001ppm | ≤30 seconds |
| Chlorine dioxide (CLO2) | 0-10ppm | <±3%(F.S) | 0.01ppm | ≤30 seconds |
| Chlorine dioxide (CLO2) | 0-200ppm | <±3%(F.S) | 0.01ppm | ≤30 seconds |
| Ethylene oxide (ETO) | 0-100ppm | <±3%(F.S) | 0.01ppm | ≤30 seconds |
| Ethylene oxide (ETO) | 0-1000ppm | <±3%(F.S) | 0.1ppm | ≤30 seconds |
| Ethylene oxide (ETO) | 0-100%LEL | <±3%(F.S) | 1%LEL | ≤30 seconds |
| Phosgene (COCL2) | 0-1ppm | <±3%(F.S) | 0.001ppm | ≤30 seconds |
| Phosgene (COCL2) | 0-50ppm | <±3%(F.S) | 0.01ppm | ≤30 seconds |
| Silane (SiH4) | 0-1ppm | <±3%(F.S) | 0.001ppm | ≤30 seconds |
| Silane (SiH4) | 0-50ppm | <±3%(F.S) | 0.01ppm | ≤30 seconds |
| Fluorine (F2) | 0-1ppm | <±3%(F.S) | 0.001ppm | ≤30 seconds |
| Fluorine (F2) | 0-10ppm | <±3%(F.S) | 0.01ppm | ≤30 seconds |
| Fluorine (F2) | 0-50ppm | <±3%(F.S) | 0.01ppm | ≤30 seconds |
| Hydrogen fluoride (HF) | 0-10ppm | <±3%(F.S) | 0.01ppm | ≤20 seconds |
| Hydrogen fluoride (HF) | 0-50ppm | <±3%(F.S) | 0.01ppm | ≤20 seconds |
| Hydrogen bromide (HBr) | 0-50ppm | <±3%(F.S) | 0.01ppm | ≤30 seconds |
| Diborane (B2H6) | 0-10ppm | <±3%(F.S) | 0.001ppm | ≤30 seconds |
| Arsine (AsH3) | 0-1ppm | <±3%(F.S) | 0.001ppm | ≤30 seconds |
| Arsine (AsH3) | 0-10ppm | <±3%(F.S) | 0.01ppm | ≤30 seconds |
| Arsine (AsH3) | 0-50ppm | <±3%(F.S) | 0.01ppm | ≤30 seconds |
| Germane (GeH4) | 0-2ppm | <±3%(F.S) | 0.001ppm | ≤30 seconds |
| Germane (GeH4) | 0-20ppm | <±3%(F.S) | 0.01ppm | ≤30 seconds |
| Hydrazine (N2H4) | 0-1ppm | <±3%(F.S) | 0.001ppm | ≤30 seconds |
| Hydrazine (N2H4) | 0-300ppm | <±3%(F.S) | 0.1ppm | ≤30 seconds |
| Tetrahydrothiophene (THT) | 0-100mg/m3 | <±3%(F.S) | 0.01mg/m3 | ≤30 seconds |
| Bromine (Br2) | 0-10ppm | <±3%(F.S) | 0.001ppm | ≤30 seconds |
| Bromine (Br2) | 0-100ppm | <±3%(F.S) | 0.01ppm | ≤30 seconds |
| Bromine (Br2) | 0-2000ppm | <±3%(F.S) | 1ppm | ≤30 seconds |
| Acetylene (C2H2) | 0-100%LEL | <±3%(F.S) | 0.1%LEL | ≤30 seconds |
| Acetylene (C2H2) | 0-100ppm | <±3%(F.S) | 0.01ppm | ≤30 seconds |
| Acetylene (C2H2) | 0-1000ppm | <±3%(F.S) | 0.1ppm | ≤30 seconds |
| Ethylene (C2H4) | 0-100%LEL | <±3%(F.S) | 0.1%LEL | ≤30 seconds |
| Ethylene (C2H4) | 0-100ppm | <±3%(F.S) | 0.01ppm | ≤30 seconds |
| Ethylene (C2H4) | 0-2000ppm | <±3%(F.S) | 0.1ppm | ≤30 seconds |
| Acetaldehyde (C2H4O) | 0-10ppm | <±3%(F.S) | 0.01ppm | ≤30 seconds |
| Ethanol (C2H6O) | 0-100ppm | <±3%(F.S) | 0.01ppm | ≤30 seconds |
| Ethanol (C2H6O) | 0-2000ppm | <±3%(F.S) | 1ppm | ≤60 seconds |
| Methanol (CH6O) | 0-100ppm | <±3%(F.S) | 0.01ppm | ≤30 seconds |
| Methanol (CH6O) | 0-2000ppm | <±3%(F.S) | 1ppm | ≤30 seconds |
| Carbon disulfide (CS2) | 0-50ppm | <±3%(F.S) | 0.01ppm | ≤30 seconds |
| Carbon disulfide (CS2) | 0-5000ppm | <±3%(F.S) | 0.01ppm | ≤30 seconds |
| Acrylonitrile (C3H3N) | 0-50ppm | <±3%(F.S) | 0.01ppm | ≤30 seconds |
| Acrylonitrile (C3H3N) | 0-2000ppm | <±3%(F.S) | 1ppm | ≤30 seconds |
| Methylamine (CH5N) | 0-50ppm | <±3%(F.S) | 0.01ppm | ≤30 seconds |
| I2 | 0-50ppm | <±3%(F.S) | 0.01ppm | ≤30 seconds |
| Styrene (C8H8) | 0-200ppm | <±3%(F.S) | 0.1ppm | ≤30 seconds |
| Styrene (C8H8) | 0-5000ppm | <±3%(F.S) | 1ppm | ≤30 seconds |
| Vinyl chloride (C2H3CL) | 0-100ppm | <±3%(F.S) | 0.01ppm | ≤30 seconds |
| Trichloroethylene (C2HCL3) | 0-100ppm | <±3%(F.S) | 0.01ppm | ≤30 seconds |
| Tetrachloroethylene (C2CL4) | 0-100ppm | <±3%(F.S) | 0.01ppm | ≤30 seconds |
| Laughing gas (N2O) | 0-100ppm | <±3%(F.S) | 0.01ppm | ≤30 seconds |
| Nitrogen trifluoride (NF3) | 0-100ppm | <±3%(F.S) | 0.01ppm | ≤30 seconds |
| Hydrogen peroxide (H2O2) | 0-100ppm | <±3%(F.S) | 0.01ppm | ≤30 seconds |
| Sulfuryl fluoride (SO2F2) | 0-100ppm | <±3%(F.S) | 0.01ppm | ≤30 seconds |
| Sulfuryl fluoride (SO2F2) | 0-30000ppm | <±3%(F.S) | 1ppm | ≤30 seconds |
| Sulfuryl fluoride (SO2F2) | 0-200g/m3 | <±3%(F.S) | 0.1g/m3 | ≤30 seconds |
| Sulfuryl fluoride (SO2F2) | 0-100ppm | <±3%(F.S) | 0.01ppm | ≤30 seconds |
| Sulfuryl fluoride (SO2F2) | 0-5000ppm | <±3%(F.S) | 1ppm | ≤30 seconds |
| Sulfuryl fluoride (SO2F2) | 0-10000ppm | <±3%(F.S) | 1ppm | ≤30 seconds |
| C6H6 | 0-10ppm | <±3%(F.S) | 0.01ppm | ≤30 seconds |
| C6H6 | 0-100ppm | <±3%(F.S) | 0.01ppm | ≤30 seconds |
| C6H6 | 0-2000ppm | <±3%(F.S) | 1ppm | ≤30 seconds |
When choosing a portable gas detector, you need to consider the detection range and accuracy of different sensors and ranges. In addition, the data storage capacity, explosion-proof performance, and portability of the detector are also important considerations. For example, a handheld all-in-one detector integrates the functions of multiple sensors and can detect multiple gases at the same time. Single-function detectors are lighter and more convenient, and are suitable for occasions where specific gases need to be detected quickly.
FAQ
Sino-Inst specializes in the research and development, production and sales of gas detectors. We are committed to providing customers with efficient, accurate and reliable detection equipment. We provide portable mobile online gas detectors, hand-pushed mobile pump-suction gas detectors, point-type online gas detectors, fixed all-in-one gas detectors, high-temperature combustible gas detectors and other gas detectors to meet customers’ gas detection needs in different fields and scenarios.
Request a Quote
More Resources
-
5 Best Digital Mass Flow Controllers for Precision Gas Flow Measurement
Finding the best digital mass flow controller is crucial for maintaining accuracy, efficiency, and reliability in critical applications. These sophisticated instruments have…
-
Guide to Connecting a Thermal Mass Flow Controller to a PLC
How to connect and use a Sino-Inst thermal gas mass flow controller and a PLC? The connection between a thermal gas mass flow…
-
Expert Guide: How a Photoionization Detector Works
A photoionization detector (PID) is a highly sensitive analytical instrument designed for the broad-spectrum detection of volatile organic compounds (VOCs) and certain inorganic…
-
CO2 Sensor vs. VOC Sensor: What’s the Difference?
An examination of indoor air quality monitoring reveals a frequent point of confusion regarding the distinct roles of carbon dioxide (CO₂) and volatile…
-
7 Critical Mistakes in Gas Sampling System Design: A Practical Checklist
The integrity of a gas analysis process is fundamentally dependent on the quality of its gas sampling system. An improperly designed or maintained…
-
Buyer’s Guide: 7 Critical Checks for Selecting a Chlorine Gas Detector
Effective chlorine detection is an essential requirement in numerous industrial and municipal sectors, including water treatment plants, chemical plants, and pulp and paper…
.png)







